

Customer: WhiteSwap
Date: November 5th, 2020

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer and
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
WhiteSwap (56 pages)

Approved by Andrew Matiukhin | CTO Hacken OU
Type Tokens Swap
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review
Repository https://github.com/WhiteSwap/whiteswap-contracts

Commit E42B1ED881EEB3719029FC3C250BE783288EAB64
Timeline 30 OCT 2020 – 5 NOV 2020
Changelog 5 NOV 2020 - Initial Audit

6 NOV 2020 – Customer comments added

Table of contents

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 7

AS-IS overview.. 8

Conclusion... 57

Disclaimers.. 58

Introduction

Hacken OÜ (Consultant) was contracted by WhiteSwap (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of the
Customer's smart contract and its code review conducted between
October 30th, 2020 – November 5th, 2020.

Scope

The scope of the project is smart contracts in the repository:
Repository: https://github.com/WhiteSwap/whiteswap-contracts
Commit: E42B1ED881EEB3719029FC3C250BE783288EAB64

Files in scope of review

contracts/proxy/WSProxy.sol
contracts/proxy/WSProxyFactory.sol
contracts/proxy/WSProxyPair.sol
contracts/proxy/WSProxyRouter.sol
contracts/WSPair.sol
contracts/WSController.sol
contracts/WSFactory.sol
contracts/WSRouter.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts can
be improved to follow best practices.

We described issues in the conclusion of these documents. Please
read the whole document to estimate the risks well.

1

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 1 Medium severity issue during the
audit.

1 Look for details and justification in conclusion section

Insecure Poor secured Secured Well-secured

You are here1

Graph 1. The distribution of vulnerabilities.

Medium
100%

Medium

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are essential to fix;
however, they can't lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

AS-IS overview

WSProxy.sol

Imports

WSProxy.sol file has 1 import:

• IWSProxy.sol — from project files;

Proxy contract

Description

Proxy is abstract contract provides a fallback function that
delegates all calls to another contract using the EVM
instruction delegatecall.

Inheritance

Proxy contract inherits nothing.

Functions

Proxy has 5 functions:

• _delegate

Description

Delegates the current call to implementation.

Visibility

internal

Input parameters

o address implementation — an address of implementation;

Constraints

None

Events emit

None

Output

None

• _implementation

Description

This is a virtual function that should be overridden to
return the address to delegate to.

Visibility

internal virtual view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns the address for delegation.

• _fallback

Description

Delegates the current call.

Visibility

internal

Input parameters

None

Constraints

None

Events emit

None

Output

None

• fallback

Description

A fallback function that delegates call. Will be fired if
no other function in the contract matches the call data.

Visibility

payable external

Input parameters

None

Constraints

None

Events emit

None

Output

None

• receive

Description

A fallback function that delegates call. Will be fired if
the call data is empty.

Visibility

payable external

Input parameters

None

Constraints

None

Events emit

None

Output

None

UpgradeableProxy contract

Description

UpgradeableProxy is a contract that implements an upgradeable
proxy. It is upgradeable because calls are delegated to an
implementation address that can be changed.

Inheritance

UpgradeableProxy contract inherits Proxy.

Fields

UpgradeableProxy contract has 1 field:

• bytes32 private constant _IMPLEMENTATION_SLOT — storage
slot with the address of the current implementation;

Functions

UpgradeableProxy has 4 functions:

• constructor

Description

Initializes contract.

Visibility

public payable

Input parameters

None

Constraints

o The _IMPLEMENTATION_SLOT must be the keccak-256 hash
of "eip1967.proxy.implementation" subtracted by 1.

Events emit

None

Output

None

• _implementation

Description

Used to get the current implementation address.

Visibility

internal view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns the current implementation address.

• _upgradeTo

Description

Upgrades the proxy to a new implementation.

Visibility

virtual internal

Input parameters

o address newImplementation — an address of the new
implementation;

Constraints

None

Events emit

o Upgraded

Output

None

• _setImplementation

Description

Stores a new address in the EIP1967 implementation slot.

Visibility

private

Input parameters

o address newImplementation — an address of the new
implementation;

Constraints

o The new implementation address must be different from
the current implementation address.

Events emit

None

Output

None

TransparentUpgradeableProxy

Description

TransparentUpgradeableProxy contract implements a proxy that is
upgradeable by an admin.

Inheritance

TransparentUpgradeableProxy contract
inherits UpgradeableProxy and IWSProxy.

Fields

TransparentUpgradeableProxy contract has 1 field:

• bytes32 private constant _ADMIN_SLOT — storage slot with
the admin of the contract;

Modifiers

TransparentUpgradeableProxy contract has 1 modifier:

• ifAdmin — delegates the call to the implementation if the
sender is not an administrator;

Functions

TransparentUpgradeableProxy has 9 functions:

• constructor

Description

Initializes an upgradeable proxy managed by _admin

Visibility

public

Input parameters

None

Constraints

o The _ADMIN_SLOT must be the keccak-256 hash of
"eip1967.proxy.admin" subtracted by 1.

Events emit

None

Output

None

• admin

Description

Used to get the current admin.

Visibility

external

Input parameters

None

Constraints

o Only admin can call it.

Events emit

None

Output

Returns the current admin.

• initialize

Description

Sets _newImplementation, _admin and make delegatecall
with _data.

Visibility

external

Input parameters

o address _newImplementation — an address of a new
implementation;

o address _admin — an address of the admin;
o bytes calldata _data — a call data;

Constraints

o Only admin can call it.

Events emit

None

Output

None

• implementation

Description

Used to get current implementation.

Visibility

external

Input parameters

None

Constraints

o Only admin can call it.

Events emit

None

Output

Returns the current implementation.

• changeAdmin

Description

Changes the admin of the proxy.

Visibility

external

Input parameters

o address newAdmin — an address of a new admin;

Constraints

o Only admin can call it.
o The new administrator must be different from the

current administrator.

Events emit

o AdminChanged

Output

None

• upgradeTo

Description

Changes the implementation of the proxy.

Visibility

external

Input parameters

o address newImplementation — an address of the new
implementation;

Constraints

o Only admin can call it.

Events emit

None

Output

None

• upgradeToAndCall

Description

Modifies the proxy implementation and then calls a function
from the new implementation as specified in the data.

Visibility

external payable

Input parameters

o address newImplementation — an address of a new
implementation;

o bytes calldata data — a call data;

Constraints

o Only admin can call it.

Events emit

None

Output

None

• _admin

Description

Used to get current admin address.

Visibility

internal view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns the current admin address.

• _setAdmin

Description

Stores a new address in the EIP1967 admin slot.

Visibility

private

Input parameters

o address newAdmin — an address of the new admin;

Constraints

o Admin address can't be zero.

Events emit

None

Output

None

WSProxyFactory.sol, WSProxyPair.sol, WSProxyRouter.sol

Description

WSProxyFactory, WSProxyPair, WSProxyRouter are contracts that
only inherit TransparentUpgradeableProxy.

WSController.sol

Imports

WSController.sol file has 4 imports:

• IWSProxy.sol — from project files;
• IWSController.sol — from project files;
• IWSImplementation.sol — from project files;
• Ownable.sol — from project files;

WSController contract

Description

WSController contract used to manage the proxy.

Inheritance

WSController contract inherits Ownable and IWSController.

Fields

WSController contract contract has 3 fields:

• pairLogic — an address of pair logic;
• currentAdmin — an address of admin;
• uint256 constant public PAIR_TYPE — a pair type identifier;

Functions

WSController has 7 functions:

• constructor

Description

Initializes the contract.

Visibility

public

Input parameters

None

Constraints

o Pair logic address can't be zero.

Events emit

None

Output

None

• updatePairLogic

Description

Updates pair logic.

Visibility

external

Input parameters

o address _logic — an addres of pair logic;

Constraints

o Only Owner can call it.

Events emit

o NewPairLogic

Output

None

• updateCurrentAdmin

Description

Updates current admin.

Visibility

external

Input parameters

o address _newAdmin — an addres of a new admin;

Constraints

o Only Owner can call it.

Events emit

o NewAdmin

Output

None

• updateProxyPair

Description

Updates a pair of proxy.

Visibility

external

Input parameters

o address _proxy — an addres of the proxy;

Constraints

o Proxy implementation type must match PAIR_TYPE.

Events emit

o UpdateProxy

Output

None

• setAdminForProxy

Description

Used to set the admin for the proxy.

Visibility

external

Input parameters

o address _proxy — an addres of the proxy;

Constraints

None

Events emit

o ChangeAdmin

Output

None

• getLogicForPair

Description

Used to get the pair logic.

Visibility

external view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns an address of the pair logic.

• getCurrentAdmin

Description

Used to get the addres of the current admin.

Visibility

external view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns the addres of the current admin.

WSFactory.sol

Imports

WSFactory.sol file has 5 imports:

• IWSFactory.sol — from project files;
• IWSController.sol — from project files;
• WSProxyPair.sol — from project files;
• IWSPair.sol — from project files;

• IWSImplementation.sol — from project files;

WSFactory contract

Description

WSFactory contract used to create pairs.

Inheritance

WSFactory contract inherits IWSFactory and IWSImplementation.

Fields

WSFactory contract contract has 6 fields:

• bool private initialized — initialization indicator;
• address public override feeTo — an address to which the fee

will be transferred;
• address public override feeToSetter — an address of fee

setter;
• address public controller — an address of controller;
• mapping(address => mapping(address => address)) public

override getPair — a mapping used for storing pairs;
• address[] public override allPairs — a list of pairs;

Functions

WSFactory has 6 functions:

• initialize

Description

Initializes the contract.

Visibility

public

Input parameters

o address _feeToSetter — an address of fee setter;
o address _controller — an address of controller;

Constraints

o The contract should not be initialized yet.
o _controller should not be zero address.
o _feeToSetter should not be zero address.

Events emit

None

Output

Returns true if success.

• allPairsLength

Description

Used to get the total number of created pairs.

Visibility

external view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns the total number of created pairs.

• createPair

Description

Creates a pair.

Visibility

external

Input parameters

o address tokenA — an address of token;
o address tokenB — an address of token;

Constraints

o tokenA should not match tokenB.
o tokenA and tokenB should not be zero adresses.
o Pair should not exist yet.
o Pair should be successfully initialized.

Events emit

o PairCreated

Output

Returns an address of the pair.

• setFeeTo

Description

Sets the address to which the fee will be transferred.

Visibility

external

Input parameters

o address _feeTo — an address to which the fee will be
transferred;

Constraints

o Only feeToSetter can call it.

Events emit

None

Output

None

• setFeeToSetter

Description

Sets fee setter address.

Visibility

external

Input parameters

o address _feeToSetter — an address of fee setter;

Constraints

o Only feeToSetter can call it.

Events emit

None

Output

None

• getImplementationType

Description

Used to get the type of implementation.

Visibility

external pure

Input parameters

None

Constraints

None

Events emit

None

Output

Returns 1 - it is a factory type.

WSPair.sol

Imports

WSPair.sol file has 8 imports:

• IWSPair.sol — from project files;
• IWSImplementation.sol — from project files;
• WSERC20.sol — from project files;
• Math.sol — from project files;
• UQ112x112.sol — from project files;
• IERC20.sol — from project files;
• IWSFactory.sol — from project files;
• IWSCallee.sol — from project files;

WSPair contract

Description

WSPair contract used to manage token pairs.

Inheritance

WSPair contract inherits IWSPair, WSERC20 and IWSImplementation.

Usings

WSPair contract use:

• SafeMath for uint;
• UQ112x112 for uint224;

Modifiers

WSPair contract has 1 modifier:

• lock — blocks other calls while the current call is in
progress;

Fields

WSPair contract contract has 13 fields:

• uint public override constant MINIMUM_LIQUIDITY — the
minimum liquidity valueж

• bytes4 private constant SELECTOR — the selector of the
transfer function;

• address public override factory — an address of factory;
• address public override token0 — an address of token;
• address public override token1 — an address of token;
• uint112 private reserve0 — the number of tokens

in token0 reserve;
• uint112 private reserve1 — the number of tokens

in token1 reserve;
• uint32 private blockTimestampLast — a block.timestamp of

the last update;
• uint public override price0CumulativeLast — the price

accumulator of token0;
• uint public override price1CumulativeLast — the price

accumulator of token1;
• uint public override kLast — the result of

multiplying reserve0 by reserve1;
• bool private initialized — initialization indicator;
• uint private unlocked — lock indicator;

Functions

WSPair has 12 functions:

• isLocked

Description

Used to get the lock indicator.

Visibility

external view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns the lock indicator.

• getReserves

Description

Used to get reserves and the block.timestamp of the last
update.

Visibility

public view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns reserves and the block.timestamp of the last
update.

• _safeTransfer

Description

Transfers tokens.

Visibility

private

Input parameters

o address token — an address of the token;
o address to — an address of the receiver;
o uint value — an amount of tokens;

Constraints

o The transfer must be successful.

Events emit

None

Output

None

• initialize

Description

Initializes the contract.

Visibility

external

Input parameters

o address _factory — an address of factory;
o address _token0 — an address of token0;
o address _token1 — an address of token1;

Constraints

o The contract should not be initialized yet.

Events emit

None

Output

None

• _update

Description

Used to update reserves, blockTimestampLast, and price
accumulators.

Visibility

private

Input parameters

o uint balance0 — a balance of the token0;
o uint balance1 — a balance of the token1;
o uint112 _reserve0 — a reserve of the token0;
o uint112 _reserve1 — a reserve of the token1;

Constraints

o Balances should not overflow uint112 range.

Events emit

o Sync

Output

None

• _mintFee

Description

Mints fee.

Visibility

private

Input parameters

o uint112 _reserve0 — a reserve of the token0;
o uint112 _reserve1 — a reserve of the token1;

Constraints

None

Events emit

None

Output

Returns feeOn bool indicator.

• mint

Description

Mints tokens to the address.

Visibility

external

Input parameters

o address to — an address of receiver;

Constraints

o Liquidity must be greater than 0.

Events emit

o Mint

Output

None

• burn

Description

Burns all tokens from the contract and transfers them to
the address.

Visibility

external

Input parameters

o address to — an address of receiver;

Constraints

o Liquidity must be greater than 0.

Events emit

o Burn

Output

None

• swap

Description

Used to swap tokens.

Visibility

external

Input parameters

o uint amount0Out — an amount outcome from the token0;
o uint amount1Out — an amount outcome from the token1;
o address to — an address of receiver;
o bytes calldata data — a call data;

Constraints

o Outcome amounts must be greater than 0.
o Outcome amounts must be less than reserves.
o Receiver address should not match token0 or token1

address.
o Income amounts must be greater than 0.

Events emit

o Swap

Output

None

• skim

Description

Makes balances match reserves.

Visibility

external

Input parameters

o address to — an address of receiver;

Constraints

None

Events emit

None

Output

None

• sync

Description

Makes reserves match balances.

Visibility

external

Input parameters

None

Constraints

None

Events emit

None

Output

None

• getImplementationType

Description

Used to get the type of implementation.

Visibility

external pure

Input parameters

None

Constraints

None

Events emit

None

Output

Returns 2 - it is a pair type.

WSRouter.sol

Imports

WSRouter.sol file has 8 imports:

• IWSFactory.sol — from project files;
• TransferHelper.sol — from project files;
• WSLibrary.sol — from project files;
• IWSRouter.sol — from project files;
• IERC20.sol — from project files;
• IWSERC20.sol — from project files;

• IWETH.sol — from project files;
• IWSImplementation.sol — from project files;

WSRouter contract

Description

WSRouter contract used to manage token pairs.

Inheritance

WSRouter contract inherits IWSRouter and IWSImplementation.

Usings

WSRouter contract use:

• SafeMath for uint;

Modifiers

WSRouter contract has 1 modifier:

• ensure — checks that the deadline has not expired;

Fields

WSRouter contract contract has 3 fields:

• bool private initialized — initialization indicator;
• address public override factory — an address of factory;
• address public override WETH — an address of WETH;

Functions

WSRouter has 27 functions:

• initialize

Description

Initializes the contract.

Visibility

public

Input parameters

o address _factory — an address of factory;
o address _WETH — an address of WETH;

Constraints

o The contract should not be initialized yet.

Events emit

None

Output

Returns true if success.

• _addLiquidity

Description

Calculates liquidity that should be added to pair.

Visibility

internal

Input parameters

o address tokenA — an address of the tokenA;
o address tokenB — an address of the tokenB;
o uint amountADesired — a desired amount of the tokenA;
o uint amountBDesired — a desired amount of the tokenB;
o uint amountAMin — a min amount of the tokenA;
o uint amountBMin — a min amount of the tokenB;

Constraints

o amountA and amountB should be sufficient.

Events emit

None

Output

Returns amountA and amountB.

• addLiquidity

Description

Adds liquidity to a pair.

Visibility

external

Input parameters

o address tokenA — an address of the tokenA;
o address tokenB — an address of the tokenB;
o uint amountADesired — a desired amount of the tokenA;
o uint amountBDesired — a desired amount of the tokenB;
o uint amountAMin — a min amount of the tokenA;
o uint amountBMin — a min amount of the tokenB;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.

Events emit

None

Output

Returns amountA, amountB and liquidity.

• addLiquidityETH

Description

Adds liquidity to a pair with ETH.

Visibility

external payable

Input parameters

o address token — an address of token;

o uint amountTokenDesired — a desired amount of the
token;

o uint amountTokenMin — a min amount of the token;
o uint amountETHMin — a min amount of the ETH;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.

Events emit

None

Output

Returns amountA, amountB and liquidity.

• removeLiquidity

Description

Removes the liquidity from a pair.

Visibility

public

Input parameters

o address tokenA — an address of the tokenA;
o address tokenB — an address of the tokenB;
o uint liquidity — a liquidity amount;
o uint amountAMin — a min amount of the tokenA;
o uint amountBMin — a min amount of the tokenB;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o amountA and amountB should be sufficient.

Events emit

None

Output

Returns amountA and amountB.

• removeLiquidityETH

Description

Removes the liquidity from a pair with ETH.

Visibility

public

Input parameters

o address token — an address of token;
o uint liquidity — a liquidity amount;
o uint amountTokenMin — a min amount of the token;
o uint amountETHMin — a min amount of the ETH;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.

Events emit

None

Output

Returns amountToken and amountETH.

• removeLiquidityWithPermit

Description

Removes the liquidity from a pair with permit.

Visibility

external

Input parameters

o address tokenA — an address of the tokenA;
o address tokenB — an address of the tokenB;
o uint liquidity — a liquidity amount;
o uint amountAMin — a min amount of the tokenA;
o uint amountBMin — a min amount of the tokenB;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;
o bool approveMax — whether or not the approval amount

in the signature is for liquidity or uint(-1);
o uint8 v — the v component of the permit signature;
o bytes32 r — the r component of the permit signature;
o bytes32 s — the s component of the permit signature;

Constraints

o The deadline has not expired.

Events emit

None

Output

Returns amountA and amountB.

• removeLiquidityETHWithPermit

Description

Removes the liquidity from a pair with ETH and with permit.

Visibility

external

Input parameters

o address token — an address of token;
o uint liquidity — a liquidity amount;
o uint amountTokenMin — a min amount of the token;
o uint amountETHMin — a min amount of the ETH;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;
o bool approveMax — whether or not the approval amount

in the signature is for liquidity or uint(-1);
o uint8 v — the v component of the permit signature;
o bytes32 r — the r component of the permit signature;

o bytes32 s — the s component of the permit signature;

Constraints

None

Events emit

None

Output

Returns amountToken and amountETH.

• removeLiquidityETHSupportingFeeOnTransferTokens

Description

Removes the liquidity from a pair with ETH, succeeds for
tokens that take a fee on transfer.

Visibility

public

Input parameters

o address token — an address of token;
o uint liquidity — a liquidity amount;
o uint amountTokenMin — a min amount of the token;
o uint amountETHMin — a min amount of the ETH;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.

Events emit

None

Output

Returns amountETH.

• removeLiquidityETHWithPermitSupportingFeeOnTransferTokens

Description

Removes the liquidity from a pair with ETH and with permit,
succeeds for tokens that take a fee on transfer.

Visibility

external

Input parameters

o address token — an address of token;
o uint liquidity — a liquidity amount;
o uint amountTokenMin — a min amount of the token;
o uint amountETHMin — a min amount of the ETH;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;
o bool approveMax — whether or not the approval amount

in the signature is for liquidity or uint(-1);
o uint8 v — the v component of the permit signature;
o bytes32 r — the r component of the permit signature;
o bytes32 s — the s component of the permit signature;

Constraints

None

Events emit

None

Output

Returns amountETH.

• _swap

Description

Used to swap tokens.

Visibility

internal

Input parameters

o uint[] memory amounts — amounts;
o address[] memory path — path;
o address _to — an address of receiver;

Constraints

None

Events emit

None

Output

None

• swapExactTokensForTokens

Description

Swaps an exact amount of input tokens for as many output
tokens as possible.

Visibility

external

Input parameters

o uint amountIn — income amount;
o uint amountOutMin — min outcome amount;
o address[] calldata path — an array of token addresses;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.
o Output amount should be greater than or

equal amountOutMin.

Events emit

None

Output

Returns the array of amounts.

• swapTokensForExactTokens

Description

Receive an exact amount of output tokens for as few input
tokens as possible.

Visibility

external

Input parameters

o uint amountOut — outcome amount;
o uint amountInMax — max income amount;
o address[] calldata path — an array of token addresses;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.
o Input amount should be less than or equal amountInMax.

Events emit

None

Output

Returns the array of amounts.

• swapExactETHForTokens

Description

Swaps an exact amount of ETH for as many output tokens as
possible.

Visibility

external payable

Input parameters

o uint amountOutMin — min outcome amount;
o address[] calldata path — an array of token addresses;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.
o path[0] should be WETH.
o Output amount should be greater than or

equal amountOutMin.

Events emit

None

Output

Returns the array of amounts.

• swapTokensForExactETH

Description

Receive an exact amount of ETH for as few input tokens as
possible.

Visibility

external

Input parameters

o uint amountOut — outcome amount;
o uint amountInMax — max income amount;
o address[] calldata path — an array of token addresses;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.
o path[path.length - 1] should be WETH.
o Input amount should be less than or equal amountInMax.

Events emit

None

Output

Returns the array of amounts.

• swapExactTokensForETH

Description

Swaps an exact amount of tokens for as much ETH as
possible.

Visibility

external

Input parameters

o uint amountIn — income amount;
o uint amountOutMin — min outcome amount;
o address[] calldata path — an array of token addresses;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.
o path[path.length - 1] should be WETH.
o Output amount should be greater than or

equal amountOutMin.

Events emit

None

Output

Returns the array of amounts.

• swapETHForExactTokens

Description

Receive an exact amount of tokens for as little ETH as
possible.

Visibility

external payable

Input parameters

o uint amountOut — outcome amount;
o address[] calldata path — an array of token addresses;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.
o path[0] should be WETH.
o Input amount should be less than or equal msg.value.

Events emit

None

Output

Returns the array of amounts.

• _swapSupportingFeeOnTransferTokens

Description

Swaps with supporting fee-on-transfer tokens.

Visibility

internal

Input parameters

o address[] memory path — an array of token addresses;
o address to — an address of receiver;

Constraints

None

Events emit

None

Output

None

• swapExactTokensForTokensSupportingFeeOnTransferTokens

Description

Swaps an exact amount of input tokens for as many output
tokens as possible, succeeds for tokens that take a fee on
transfer.

Visibility

external

Input parameters

o uint amountIn — income amount;
o uint amountOutMin — min outcome amount;
o address[] calldata path — an array of token addresses;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.
o Output amount should be greater than or

equal amountOutMin.

Events emit

None

Output

None

• swapExactETHForTokensSupportingFeeOnTransferTokens

Description

Swaps an exact amount of ETH for as many output tokens as
possible, succeeds for tokens that take a fee on transfer.

Visibility

external payable

Input parameters

o uint amountOutMin — min outcome amount;
o address[] calldata path — an array of token addresses;
o address to — an address of receiver;
o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.
o path[0] should be WETH.
o Output amount should be greater than or

equal amountOutMin.

Events emit

None

Output

None

• swapExactTokensForETHSupportingFeeOnTransferTokens

Description

Swaps an exact amount of tokens for as much ETH as
possible.

Visibility

external

Input parameters

o uint amountIn — income amount;
o uint amountOutMin — min outcome amount;
o address[] calldata path — an array of token addresses;
o address to — an address of receiver;

o uint deadline — the deadline timestamp;

Constraints

o The deadline has not expired.
o path[path.length - 1] should be WETH.
o Output amount should be greater than or

equal amountOutMin.

Events emit

None

Output

None

• getImplementationType

Description

Used to get the type of implementation.

Visibility

external pure

Input parameters

None

Constraints

None

Events emit

None

Output

Returns 3 - it is a router type.

Library functions

quote, getAmountOut, getAmountIn, getAmountsOut, getAmountsIn ar
e just wrappers for WSLibrary functions. Without any additional
logic.

Audit overview
 Critical

No critical issues were found.

 High

No high issues were found.

 Medium

1. Almost all files in the audit scope import dependencies that
are not included in the audit scope. As soon as those
dependencies are out of the audit scope, they are relatively
safe.

File Line Dependency

contracts\WSController.sol 8 Ownable.sol

contracts\WSPair.sol 7 WSERC20.sol

8 Math.sol

9 UQ112x112.sol

contracts\WSRouter.sol 6 TransferHelper.sol

8 WSLibrary.sol

Also, among the dependencies there are files that are copied
to the project from the OpenZeppelin repository. We recommend
to import those files directly from the OpenZeppelin
repository.

The results of manual check of this dependency show next:

File Source Changes(diff)

Ownable.sol https://github.com/OpenZeppelin/openzepp
elin-
contracts/blob/master/contracts/access/O
wnable.sol

solversion

WSERC20.sol https://github.com/Uniswap/uniswap-v2-
core/blob/master/contracts/UniswapV2ERC2
0.sol

Naming,
solversion

Math.sol https://github.com/Uniswap/uniswap-v2-
core/blob/master/contracts/libraries/Mat
h.sol

solversion

UQ112x112.sol https://github.com/Uniswap/uniswap-v2-
core/blob/master/contracts/libraries/UQ1
12x112.sol

solversion

TransferHelper
.sol

https://github.com/Uniswap/uniswap-
lib/blob/master/contracts/libraries/Tran
sferHelper.sol

solversion

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/libraries/Math.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/libraries/Math.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/libraries/Math.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/libraries/UQ112x112.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/libraries/UQ112x112.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/libraries/UQ112x112.sol
https://github.com/Uniswap/uniswap-lib/blob/master/contracts/libraries/TransferHelper.sol
https://github.com/Uniswap/uniswap-lib/blob/master/contracts/libraries/TransferHelper.sol
https://github.com/Uniswap/uniswap-lib/blob/master/contracts/libraries/TransferHelper.sol

WSLibrary.sol https://github.com/Uniswap/uniswap-v2-
periphery/blob/master/contracts/librarie
s/UniswapV2Library.sol

Naming,
solversion,
init hash code

DSMath.sol https://github.com/Uniswap/uniswap-v2-
core/blob/master/contracts/libraries/Saf
eMath.sol

Naming,
solversion

 Low

No lowest severity issues were found.

 Lowest / Code style / Best Practice

No lowest severity issues were found.

https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/libraries/UniswapV2Library.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/libraries/UniswapV2Library.sol
https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/libraries/UniswapV2Library.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/libraries/SafeMath.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/libraries/SafeMath.sol
https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/libraries/SafeMath.sol

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-is overview
section of the report.

The audit report contains all found security vulnerabilities and
other issues in the reviewed code.

Security engineers found 1 Medium severity issues during the
audit.

Violations in the following categories were found and addressed
to the Customer:

Category Check Item Comments

Code review ▪ Repository
consistency

▪ The project does not follow project
structure best practices.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on the security of
the code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status, or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure the security of smart
contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its own vulnerabilities that can
lead to hacks. Thus, the audit can't guarantee explicit security
of the audited smart contracts.

